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• Focus is on Light-duty Multimode (MM) engine operation.

• MM uses advanced combustion at lower loads

in combination with boosted SI at high loads.

• Here, sampling from Co-Optima efforts on MM.

‒ Highlight the role of important fuel properties.

• Provide quantitative example of how MM can provide fuel-economy benefits.

Introduction

Boosted SI

Lean Operation

What fuels do engines
really want?

• MM fuels need to 

enable Boosted SI.

ORNL

(J. Szybist)
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Contributions from Across Co-Optima Teams

Only a small fraction of all Multimode work is featured in this presentation.

This research was sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and 
Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices.
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• Increased thermal efficiency.

‒ Increased g, reduced pumping losses and heat transfer. 

• Combustion instability.

• Excessive burn duration.

• Lean NOx aftertreatment.

• Dilute well-mixed SI:

‒ 3-way catalyst can be used.

‒ Slow combustion and limited FE gain.

Benefits and Challenges with Lean Operation
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Well-mixed SI Operation
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https://doi.org/10.4271/2016-01-0689


62021 Vehicle Technologies Annual Merit Review

10

20

30

40

0.4 0.5 0.6 0.7 0.8 0.9 1

1
0

-9
0
%

 B
u

rn
 D

u
r.

 [
°C

A
]

Mass-Based Equivalence Ratio [fm]

Lean, Heated

Lean

Dilute, Heated

Dilute

Gasoline
15.7 mga.

Well-mixed SI Operation• Increased thermal efficiency.

‒ Increased g, reduced pumping losses and heat transfer. 

• Combustion instability.

• Excessive burn duration.

• Lean NOx aftertreatment.

• Dilute well-mixed SI:

‒ 3-way catalyst can be used.

‒ Slow combustion and limited FE gain.

‒ Fuels with inherent high flame speed are beneficial,

but limited opportunities with the maximum

30% blend level of Co-Optima.

• ACI (advanced compression ignition) techniques can 

enable fast burn even for very lean conditions.

• Also fully stratified-charge (SC) SI enables lean burn.

‒ Multiple bioblendstocks provide fast combustion.

Benefits and Challenges with Lean Operation (2)

USC (R. Zhao & F. Egolfopoulos)
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• Superior thermal efficiency.

• Load can be smoke limited, especially when EGR is 

used to suppress NOx.

• Fuels with low sooting propensity are desirable.

• But common sooting metrics not always applicable.

• New sooting metrics are being considered.
‒ Collaboration with Yale (C. McEnally) and LLNL (S. Lapointe [23]).

Overcoming Challenges with Lean Operation;
Role of Fuel Properties for Stratified-charge (SC) SI

High Cycloalkane Core Fuel
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SNL (N. Kim) – [9]

https://doi.org/10.1016/j.combustflame.2020.07.035
https://doi.org/10.1016/j.proci.2020.06.173


82021 Vehicle Technologies Annual Merit Review

• Low NOx.

• Requires high reactant temperatures, which 

decreases g & increases heat transfer.

• Combustion-phasing control challenge.

• RON & MON often inadequate for K > 1  

use compositional constraints or

newly developed CFR HCCI rating.

Overcoming Challenges with Lean Operation;
Role of Fuel Properties for HCCI
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ORNL (J. Szybist) – [17]

https://doi.org/10.1016/j.jaecs.2020.100003
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• Uses stratification to aid combustion control.

• Requires high boost pressure for CRs

suitable also for boosted SI.

• Limited load range.

• Lower load limits (defined by CE > 92.5%)

varies with fuel.
‒ Di-isobutylene and Aromatic fuels best at

maintaining high combustion efficiency (CE).

‒ Fuel properties do not explain these differences.

• RON & MON generally applicable in terms of autoignition timing, see next slide.

Overcoming Challenges with Lean Operation;
Role of Fuel Properties for PFS-ACI

ORNL (T. Powell) – [20]

HRR1st Inj 2nd Inj
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• Spark-timing controlled.

• Moderate reactant temperature requirement.

• Superior load range compared to PFS and HCCI.

• Relatively high NOx levels (but EGR helps).

• Mixed-mode combustion speeds up burn-out phase.

• RON and MON describe autoignition reactivity

using Octane-Index (OI) framework for K < 1 

Overcoming Challenges with Lean Operation;
Role of Fuel Properties for SACI

PFS vs. SACI

ORNL

(F. Chuahy)

– [18]

SACI PFS

K = -0.33 K = -0.41

[16] - ORNL (T. Powell) – [20]

https://doi.org/10.1016/j.fuel.2021.120844
https://doi.org/10.3390/en14030607
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Burn-Out

• Mixed-mode combustion speeds up burn-out.

• Deflagration  end-gas autoignition

• Ensures sufficiently short burn duration.

• For a given spark timing, induction of end-gas 

autoignition depends on the fuel.

• However, spark-timing adjustments can 

compensate for differences in fuel reactivity.

An Examination of SACI; Well-Mixed SI Experiments

E30, RON = 105

Tin = 100 C

f = 0.55, 

f = 0.55

SNL (M. Sjöberg) – [3]

SNL (M. Sjöberg) - [1]

https://doi.org/10.1177/1468087417740290
https://doi.org/10.4271/2016-01-0689
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An Examination of SACI;
Partial Fuel Stratification (PFS) SI Experiments
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• Creates an enriched 

region near spark plug.

• Large 3.4 mg pilot in this 

example.

• To stabilize lean SACI operation, use pilot 

injection at the time of spark  PFS – SACI.
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SNL (Z. Hu) - [8]

https://doi.org/10.1177/1468087419889702
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PFS-SACI; Optical
Imaging Experiments

• Smaller 0.7 mg pilot (210ms inj. dur.)

• Liquid fuel

vaporizes

quickly.

• PFS-SACI and PFS-ACI require good 

handle on fuel-air mixture formation.

• Spray-vessel experiments reveal strong 

influence of distillation curve on spray 

morphology at lower pressures.
‒ Lower sensitivity for late injection.

Fundamental Spray 
Experiments

SNL (J. Hwang) – [10]

iso-Octane

3D Tomographic Images, P = 0.5 bar
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https://doi.org/10.1016/j.fuel.2020.118359
https://doi.org/10.3390/en14020396
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LES-CFD Reveals the Role of Flame Speed for SACI

• Model predicts that PFS operation reduces 

sensitivity to variations of laminar flame speed.

• May enable PFS-SACI to provide stable 

operation with EGR to suppress NOx.

• CFD reveals that NOx formation is closely

tied to mixture formation.
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Chemical kinetics by LLNL (S. Cheng) – [24]

CFD by ANL (C. Xu) – [11]

https://doi.org/10.1016/j.combustflame.2021.01.033
https://doi.org/10.1115/1.4050588
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Fuel Effects on Lean Exhaust Aftertreatment

• Important to assess how bioblendstocks impact the performance of emissions control 

catalysts.

• Multimode engines must

meet emissions regulations.

• Measured three-way catalyst

(TWC) stoichiometric light-off

and lean light-down temp.

• 10-30% blends of ethanol,

isobutanol, di-isobutylene,

and aromatics mixed into a

surrogate BOB (+neat). 

• Overall TWC reactivity is

controlled primarily by the BOB

components rather than the

high performance blendstocks. 

ORNL (S. Majumdar)
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Developed and Used a Methodology for Determining
Octane Requirements of SACI

2. GT-Power for

T-P trajectories3. CHEMKIN - autoignition

4. Screen for feasibility

1. Experiments for 

validation data
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• Upper load limit is strongly 

favored by increasing RON 

and S.

• Lower load limit is nearly 

invariant with RON and S.

5. Quantify 

load ranges

SNL (D. Vuilleumier, N. Kim)Chemical kinetics by LLNL (W. Pitz)
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Developed and Used Framework to Predict the Effect of Fuel Type on 
Fuel Economy; Stoichiometric and Multimode

Gaussian 
Process 

Regression 
model

Fuel-Flow Rate Map

DOE w/ GT-Power model
Stoichiometric Operation

Regression model

KL-CA50

Exp. Engine Data for many
fuels, operating conditions & 

engine thermal states

Drive Cycle
Simulation

Determine knock limits 
for hypothetical fuels

Fuel Consumption
Rate

20

22

24

26

28

30

32

34

RON90-S2 RON90-S12 RON100-S2 RON100-S12

F
u

e
l 

E
c

o
n

o
m

y
 [

M
P

G
] US06 (combined)

FTP-75 (weighted avg)

Fuel Economy

Torque,
Fuel Flow

Multimode Coverage

0

2

4

6

8

10

12

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

L
o

a
d

 L
im

it
s

, 
IM

E
P

 [
b

a
r]

Engine Speed [rpm]

RON100-S12, SACI

RON100-S12, Stratified

Multimode Coverage, RON100-S12

Stratified Charge

SACI

SNL (M. Sjöberg, N. Kim)

LLNL (N. Killingsworth, M. McNenly)

LBNL (J. Mueller)

ANL (R. Vijayagopal)

ORNL (S. Sluder)



182021 Vehicle Technologies Annual Merit Review

1.0 1.1 1.2 1.3 1.4 1.5
1

10

100

Ig
n

it
io

n
 D

e
la

y
 T

im
e
 [

m
s

]

1000/Tc [1/K]

 E100 RON108-S18

 E30 RON104-S14

 E20 RON102-S13

 E10 RON99-S10

 E0 RON94-S6

FGF-LLNL/E0-E100

Pc = 40 bar

phi = 1.0, ~15% O2 

Stoichiometric Knock Limits at
Reduced Engine Thermal State

• High-power SI engine can benefit greatly from 

enhanced thermal management.

‒ Suppression of engine knock. Especially 

important for downsized engines.

• Boosted knock limits of E30 are highly 

sensitive to the thermal state of the engine.

• Knock limits

of Alkylate

are much

less

sensitive.

• RCM experiments at ANL show that 

autoignition becomes more sensitive to 

changes of charge temperature (Tc) for 

high-S fuels.
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• Suppression of 

NTC behavior.

Tc  750 K,

1000/Tc  1.33)

SNL (D. Vuilleumier) - [5]

Fundamental Measurements
of Fuel Autoignition

https://doi.org/10.1016/j.combustflame.2021.01.033
https://doi.org/10.4271/04-11-03-0014
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Downsizing from
4 to 3 Cylinders (Hot)

• Downsizing provides FE benefits for FTP-

75 & HWFET, but not for US06.

‒ Higher IMEP  More knock limited.

• Autonomie predicts that enhanced thermal 

management provides most benefit for 

more aggressive driving (US06).

Fuel Effects on the Benefit of
Enhanced Thermal Management

SNL (M. Sjöberg, N. Kim), LLNL (N. Killingsworth, M. McNenly)

LBNL (J. Mueller), ANL (R. Vijayagopal)

RON100 – S2 (Hot)

US06

4 cylinders

3 cylinders

• Here, the S=12 fuels provide 

greatest benefit.
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Weak Fuel Effects for Cool Stoichiometric Operation -
Benefit of Multimode Varies with Drive Cycle and Fuel Type

• Stoichiometric; only most agressive US06 

shows a benefit of increased RON & S.

• Boosted SI Merit Function assumes CR 

adjustment with fuel type, here CR = 12.

• Multimode shows essentially no benefit for 

US06 which uses higher engine speeds.
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Substantial Fuel-Economy Benefits from Multimode 
Operation for HWFET & UDDS 

• Multimode operation provides 9 – 14% 

MPG Gains for HWFET & UDDS cycles.

• Mode switching most frequent for UDDS.

• Here, the higher SACI load limit of high-

RON high-S fuels provides benefits.
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Summary Future Work*

• Multimode engine operation can provide 

fuel-economy gains of more than 10%

for a conventional powertrain.

• For SACI, increased RON & S enable 

higher loads.

‒ Reduces the mode-switching frequency.

‒ Octane appetite of SACI is aligned with that 

of Boosted SI.

• To a large degree, the Octane Index 

framework is applicable to LD ACI.

• Emissions regulations must be met.

• Lean operation can result in excessive 

formation of NOx, HC, CO and PM.

• Assess the benefits of multimode engine 

operation for a hybridized powertrain.

• Determine mode-switching schemes 

that minimize fuel penalties.

• Determine the role of the fuels’ Heat of 

Vaporization (HoV) on SACI & ACI.

• Assess how bioblendstocks affect HoV, 

especially for +30% blend levels.

• Investigate how improved mixture 

formation can reduce engine-out 

emissions for ACI.

• Assess the use of advanced lean 

aftertreatment and potential synergies 

with future fuels.

* Any proposed future work is subject to
change based on funding levels. 
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